Biogeosciences Discuss., 5, 2445-2470, 2008 ~, -s\ : :
www.biogeosciences-discuss.net/5/2445/2008/ <6\G’ Blo%eigzﬁl:s?gﬁ:

© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

The response of the terrestrial biosphere
to urbanization: land cover conversion,
climate, and urban pollution

K. Trusilova and G. Churkina
Max-Planck Institute for Biogeochemistry, Hans-Knoell Str. 10, 07745 Jena, Germany

Received: 19 March 2008 — Accepted: 11 April 2008 — Published: 9 June 2008
Correspondence to: K. Trusilova (ktrusil@bgc-jena.mpg.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

2445

BGD
5, 2445-2470, 2008

The response of the
terrestrial biosphere
to urbanization

K. Trusilova and
G. Churkina

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-print.pdf
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

Although urban areas occupy a relatively small fraction of land, they produce major
disturbances of the carbon cycle through land use change, climate modification, and
atmospheric pollution. In this study we quantify effects of urban areas on the carbon
cycle in Europe. Among urbanization-driven environmental changes, which influence
carbon sequestration in the terrestrial biosphere, we account for: 1) proportion of land
covered by impervious materials, 2) local urban meteorological conditions, 3) urban
CO,-dome, and 4) elevated atmospheric nitrogen deposition. We use the terrestrial
ecosystem model BIOME-BGC to estimate fluxes of carbon exchange between the
biosphere and the atmosphere in response to these urban factors.

We analysed these four urbanization-driven changes individually, setting up our
model in such a way that only one of the four was active at a time. From these
model simulations we found that fertilization effects from the CO,-dome and the at-
mospheric nitrogen deposition made the strongest positive contributions to the carbon
uptake (0.023 Pg/year and 0.039 Pg/year, respectively), whereas, the impervious ur-
ban land and local urban meteorological conditions resulted in a reduction of carbon
uptake (-0.006 Pg/year and —0.007 Pg/year, respectively). The synergetic effect of the
four urbanization-induced changes was an increase of the carbon sequestration in Eu-
rope of 0.056 Pg/year.

1 Introduction

Urban population is growing at a much faster rate than the Earth’s total population and
this leads to the growth of urban areas and often to an increase of urban pollution. As
urban areas continue to grow the potential carbon sink on land is shrinking because
vegetated land is replaced by land covered with impervious materials (buildings, roads,
parking lots, etc.). Although urban areas occupy a small land fraction of about 2—-3%
of the Earth’s surface (WRI, 1998), they are sources of about 90% of anthropogenic
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carbon dioxide (CO,) globally. In Europe, about 70% of nitrogen dioxide emissions
are attributed to traffic (USGS, 1999) and, thus, to urbanized land. At the same time,
due to high energy consumption and often lack of evaporation, a warmer and drier mi-
croclimate is maintained within urban areas. All consequences of urban development
mentioned above have a great potential to influence the carbon cycle and to cause
irreversible damage to the surrounding land ecosystems.

Attempts to quantify the role of urban areas on the global carbon budget have fo-
cused largely on emissions inventories and carbon sequestration in urban ecosystems.
Earlier studies focused on different but single aspects of urbanization and its effects on
our environment such as land use modifications (USGS, 1999), global climate change
(Jones et al., 1990; Kukla et al., 1986; Parker, 2004; Wood, 1988), climate modifi-
cations at regional and local scales (Lamptey et al., 2005; Trusilova et al., 2008), and
atmospheric pollution (ESA, 2004; Idso et al., 2001; Koerner and Klopatek, 2002; WRI,
1998). It was found that the enrichment of atmospheric CO, results in an increased
Net Primary Productivity (NPP) of plants (Dewees and Saxena, 1995; Hollinger et al.,
1999; Idso and Kimball, 2001). Significant fertilisation effects of atmospheric nitrogen
were described in the work of Churkina et al. (2007). However, little research was done
on investigating the synergetic effects of these two and the urban climate on the land
biosphere. One of the major difficulties in quantifying such synergetic effects is that
urbanization affects the environment on different scales: from local (land use change)
and regional (urban climate) to continental (high concentrations of CO, and nitrogen
compounds).

In this study we quantify synergetic effects of local-, regional- and continental-scale
changes driven by urbanization on the terrestrial biosphere in Europe. We use a bio-
geochemical terrestrial ecosystem model BIOME-BGC to estimate responses in the
net carbon flux to the urbanization-driven changes in land cover, climate, atmospheric
CO, concentrations, atmospheric deposition of nitrogen that comes from oxides of ni-
trogen (NO,) produced during combustion, and the synergetic effect of all these four
changes together. We chose to include only nitrogen and CO, fertilisation effects in our
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simulations because those are direct effects which are well represented by a variety of
process-based biosphere models.

Effects on vegetation caused by urban ozone, a major component of smog, were not
included into model simulations because:

1. urban ozone affects urban vegetation locally due to its short lifetime of 1—2 days
and

2. mechanisms of these effects are not well understood and are poorly represented
in biosphere models.

2 Materials and methods
2.1 Model

The terrestrial ecosystem model BIOME-BGC (Running, 1994; Running and Coughlan,
1988; Running and Gower, 1991; Running and Hunt, 1991; Thornton, 1998; Thornton
et al., 2002) was used to estimate carbon fluxes from vegetation to the atmosphere.
The model simulates daily carbon, nitrogen, and water cycles through land ecosys-
tems. This process-based model is driven by daily meteorological data such as maxi-
mum and minimum daily temperature, precipitation, vapour pressure deficit, and solar
radiation. The land surface is parameterized using a digital elevation map, soil texture
data, land cover classification including eight plant functional types, atmospheric CO,
concentrations and the atmospheric deposition of nitrogen. Each plant functional type
is described by ecophysiological parameters.

For this study we defined urban land as in the Corine Land Cover 2000 database
(CLC2000, http://terrestrial.eionet.europa.eu/CLC2000): urban land includes areas
mainly occupied by dwellings and buildings including their connected areas (associated
lands, road network, and parking-lots), rail networks, airport installations, river and sea
port installations, industrial livestock rearing facilities, construction sites, man-made
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waste dump sites, urban parks, sport and leisure facilities. For the model simulations
all urban areas were parameterized as vegetation-free surfaces. As the CLC2000 ur-
ban land mask has resolution of 250 m, this data was upscaled to the model resolution
of 0.25 degrees.

Effects of urban pollution and climate changes were indirectly included in the simula-
tions as “urban effects”. This was done by introducing a relevant change into the input
data of the model:

1. urban land fraction as percentage of barren land in the land-use map,

2. changes in temperature and precipitation in the meteorological input dataset for
representing urban climate,

3. local elevated urban CO, concentrations, and

4. elevated atmospheric nitrogen due to human activities.

2.2 The model simulations

The model domain for this study covers most of Europe, 15 W—45 E 30 N-60 N, with a
spatial resolution of 0.25 degrees for the land surface data and meteorological fields.
The meteorological dataset was generated with the regional climate model REMO (Ja-
cob and Podzun, 1997) for multi-decadal atmospheric modelling for Europe (Chen et
al., 2007; Feser et al., 2001). These data were aggregated to a daily time step and in-
cluded minimum and maximum daily temperature, daily precipitation, downward short-
wave solar radiation, and air relative humidity.

The map of land cover classes was made based on the USGS global land cover
product (Global Land Cover Characterization from US Geological Survey).

2.2.1 Spinup simulation

Carbon and nitrogen state variables of the BIOME-BGC model represent amounts of
carbon or nitrogen stored in simulated plant and soil pools. Unless variables for the
2449
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initialization of the model’s state variables are available from measurements, model
simulations are required for their initialization (spinup run). In the spinup run, the model
is run to a steady state to obtain the size of the ecosystem’s carbon and nitrogen pools
under the assumption of the ecosystem being in equilibrium with the long-term climate.
In this simulation the CO, concentration was set to a preindustrial level of 283 ppm
(Fig. 1), the annual nitrogen atmospheric deposition was set to a constant of 2 kg N/ha,
the highest pre-industrial estimate reported by Holland et al. (1999). The meteorologi-
cal data of 1958—-1977 were replicated throughout the simulation. The spinup run was
done for each grid cell of the model domain independently (there is no spatial depen-
dence between model grid cells), until the carbon balance of the ecosystem reached
its equilibrium state.

2.2.2 Transient simulation

After the spinup simulation, the model simulations were performed for 1800—1957 with
repeated meteorological data from 1958—-1977, atmospheric nitrogen deposition grad-
ually rising (Galloway et al., 2004), and with the increasing annual mean atmospheric
CO, supplied by the CARBOEUROPE-IP project (http://www.carboeurope.org/). The
atmospheric CO, concentration (Fig. 1) represents a smooth change in the well mixed
atmosphere and was used as the background value for all model simulations. The
carbon dioxide concentration within the model was updated annually using the same
background value for all grid cells. The state variables from model simulations end-
ing in 1957 were used as starting point for model simulations from 1958 to 2003 that
include different urban effects. These are described below.

2.2.3 Simulation of urbanization-driven changes

In order to isolate effects of individual urbanization-driven changes on the terrestrial
net ecosystem exchange of carbon during the time from 1958 to 2003, six model sim-
ulations were performed. Model drivers for each simulation were set up in such a way
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that they represented none, one, or all urbanization effects (Table 1).

The NOU-simulation was the reference model run, which included no changes due
to urbanization. Each of UMET, ULAND, UAND, and UCO2 simulations included one of
the urbanization-driven changes such as urban land, urban climate bias, elevated car-
bon dioxide, and atmospheric nitrogen, respectively. The UALL simulation represented
a synergetic effect of all individual urban-related changes of the terrestrial biosphere.

For the baseline NOU-simulation the atmospheric nitrogen deposition was fixed at
the level of 1958, the atmospheric CO, concentration was set at the level of 294.8 ppm
(year 1958) assuming no rise throughout the simulation. The NOU-land-cover map,
which includes no urban land, was used. No additional urban change was introduced
to the meteorological dataset of the model.

ULAND-simulation included urban land as non-vegetated/barren surfaces. The data
on the fractional urban cover in Europe was derived from the updated urban mask
(Trusilova et al., 2008) at a spatial resolution of 10 km. This map was then upscaled to
a spatial resolution of 0.25 degrees as the fraction of urban land in each model grid cell
(Fig. 2). The ecosystem carbon fluxes of the ULAND simulation were calculated with
the model setup as in the NOU simulation with the only difference being that a part of
these fluxes proportional to the fraction of urban land was subtracted.

UMET-simulation. Quantitative estimates of the effects of urban land on the local
climate were taken from the study of Trusilova et al. (2008), who analysed differences
in near-surface temperature and precipitation between an undisturbed (without urban
land) and a present day atmospheric circulation in Europe. The extracted maps of
urbanization-induced changes for temperature and precipitation were added to the in-
put data of meteorological fields for the BIOME-BGC model.

UCO2-simulation. Near the surface, large urban clusters often are “hot spots” of
intensive CO, release from diffuse sources of anthropogenic origin (transport network,
industrial emissions etc.). A localized, human-induced increase in CO, concentrations
in urban and exurban environments is called “CO,-dome”. In previous studies, urban
CO, was reported to be higher by 8% to 129% than CO, concentrations in rural areas
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depending on season and location (Table 2). Data on the magnitude of the CO,-dome
were available for a few European cities only and did not cover all urban areas of the
domain.

Taking into account the reported magnitude of the CO, dome for selected cities,
we assumed that the larger urbanized areas produce higher CO, concentrations in
proportion to their size. Using this assumption, a map of differences between urban
and rural CO, concentrations (ACO,) was calculated from the fraction of urban land.
The urban increase of CO, concentrations was set proportionally to the urban land
fraction in the model grid (Fig. 3).

The ACO,was then used as an additional model input and included into the calcula-
tion of total input CO, concentration for each grid cell as:

Input_CO,[/, j] = Background_CO, x (1 + ACO,l/, /]), (1)

where Input_.CO, is the CO, concentration value for a grid cell [/, ], and Back-
ground_CO, is the input annual background carbon dioxide concentration (the same
value for all grid cells throughout the simulation).

UAND-simulation. In contrast to the NOU-simulation, the data on dry atmospheric
nitrogen deposition for the UAND-simulation corresponds to the year 2003. As the
model was run from 1958 to 2003, the nitrogen deposition was gradually interpolated
from the value at the beginning of the simulation (Fig. 4a) to the value in the end of the
simulation (Fig. 4b) for each model pixel. This yielded an additional input of 8.86 Tg of
nitrogen over 46 years in the model domain.

The UALL-simulation was performed with all four urbanization-driven changes in-
cluded: the CO,-dome, the rising nitrogen deposition, fraction of urban land, and the
urbanization-induced changes in local climate. As the BIOME-BGC model simulates
interactions of carbon, nitrogen, and water cycles, including all four urban factors rep-
resented the synergetic effect of urban pollution, land use, and local climate on the
carbon sequestration of European land ecosystems.
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In order to quantify responses of the land ecosystems we analysed the following car-
bon fluxes calculated by the BIOME-BGC model: Net Ecosystem Exchange (NEE),
Gross Primary Production (GPP), and Total Ecosystem Respiration (TER). The lat-
ter was calculated as a sum of heterotrophic respiration, plant growth respiration, and
maintenance respiration.

We calculated differences in modelled carbon fluxes from each of the simulations
ULAND-, UMET-, UCO2-, and UAND- and the baseline NOU-simulation. We used
these differences as quantitative estimates of the sensitivity of the carbon fluxes to
the respective urbanization-driven change. The flux difference between the UALL and
NOU simulations was interpreted as the response of the biosphere to all counteracting
urban changes together.

We calculated the total difference in the GPP, TER, and NEE over the model domain
as the sum over differences in individual pixels:

ij

C (FLX, sim) = %z S>> (Area,-, e (flx(FLX, sim), ~ fix (FLX, NOU) ) *At>,
toi

where
FLX GPP, TER or NEE flux in the simulation sim
sim=ULAND | UMET | UAND | UCO2 | UALL simulation
i,J coordinates of a model grid cell
fix(FLX, sim), ; flux FLX of the grid sell 7,  in the simulation sim, [Pg m™ year™']
At time interval over which the total amount of carbon is averaged, [year]
N total number of simulated years (N=46)
Area; area of grid cell /, /, [m2]
C(FLX,sim) total amount of carbon attributed to the flux FLX in the simulation sim
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4 Results and discussion

Model simulations were performed according to the six setups described above. Mod-
elled GPP, NEE, and TER fluxes from simulations ULAND, UMET, UCO2, UAND, and
UALL were analysed in relation to the baseline simulation NOU. The differences be-
tween each U* simulation and the baseline were interpreted as a quantitative measure
of the effect of the respective urbanization-induced change on biosphere.

41 Land cover

The conversion of vegetated land to urban caused a reduction of GPP (Fig. 5a1), TER
(not shown) and NEE (Fig. 5a2) over perturbed land. The average reduction of the
NEE flux over simulated period was —0.006 Pg/year in Europe (model domain). This
reduction accounted for 0.3% of the yearly average NEE from the relevant area. This is
the maximum over estimate of carbon release, because it is based on the assumption
that urban areas are barren. In reality, a blend of land cover types such as trees,
grasses, barren, and impervious surfaces is typical for urban areas. To account for the
heterogeneity of urban vegetation and its role in the carbon cycle we would have to
use very precise maps of urban land cover on the spatial resolution of 1-10m. This
heterogeneity also involves a wider set of model set-ups in order to represent the full
variety of urban ecosystems and, thus, would generate large uncertainties in carbon
flux estimates. An estimation of total reduction of net primary production (NPP) in the
southeastern US was made by Milesi et al. (2003). Using a remote sensing based
methodology, the authors found that an increase in urban development of 1.9% over
1990—-2000 resulted in a reduction of NPP by 0.4% over the region. However, in the
present study we focused on a general estimate of the urban effects on the European
carbon cycle and, thus, used a rather simplified representation of urban land as barren
surfaces.

The fraction of urban area covered by vegetation was estimated to be between 52
and 78 percent depending on a city’s climate zone and corresponding potential veg-
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etation (Nowak, 1996). This result was based on the estimates from 48 cities in the
USA. The vegetation fraction in European urban areas was estimated from data on 17
cities (Lavalle et al., 2002) and accounted for 29 per cent. In this study we assumed
that urban areas had no vegetation and therefore are a source rather than a sink of
carbon; 2.8% of the total land in the model domain was urban.

4.2 Climate

Conversion of vegetated to urban land leads to a reduction of the diurnal tempera-
ture range, and changes in precipitation (Trusilova et al., 2008). Trusilova et al. (2008)
showed that this conversion reduced diurnal temperature range in European cities on
average by —1.26+0.71°C in summer and by —0.73+0.54°C in winter. At the same time
the land conversion increased urban precipitation in winter by +0.09+£0.16 mm day'1
and reduced in summer by —0.05+0.22 mm day‘1. However, patterns of precipita-
tion change over Europe were heterogeneous: while urban areas in Southern Europe
experienced dry summers, cities in Western and Northern Europe were exposed to
increased rainfall in winter months.

The response of GPP and TER fluxes to these changes in climate was spatially
heterogeneous. In most areas of reduced precipitation; GPP (Fig. 5b1) and TER flux
(growth respiration and heterotrophic respiration components) were reduced. How-
ever, the photosynthetic productivity was higher in areas with enhanced precipitation
and increased temperature and resulted in local peaks of GPP (Fig. 5b1). The range
for GPP changes was (—0.22+0.41) kg m~2 year‘1 and for TER (-0.20+0.40) kg m~2
year'1. Since the areas of GPP reduction were larger in extent, they dominated the
overall average change in carbon balance —0.007 Pg/year over Europe. This could
partly be explained by the high sensitivity of the BIOME-BGC model to the soil water
availability; the reduced amount of precipitation leads to drying of soils and to the re-
duction in photosynthetic productivity of plants. The overall effect of climatic changes
on carbon balance of Europe was negative and the enhanced release of carbon from
land ecosystems.
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4.3 Urban CO,

An increase in carbon uptake of (+0.01+0.01) kg m™2 year'1 over large areas, with the
highest values up to 0.10g m~2 year‘1, were found in Central Europe where densely
urbanized areas are located (Fig. 5¢1,c2). In densely urbanized areas an increase in
atmospheric CO, concentrations was up to 129 per cent as compared to the back-
ground value over rural land. Effects of CO, concentration on plants productivity were
previously addressed in several studies. For example, Griffin et al. (2001) found that
elevated CO, produces significant changes in major cellular organelles of plants and
lead to enhanced plant productivity. Taub et al. (2000) found that plants respond to the
higher CO, by increased thermotolerance of high-temperature stress; and that effect
may have a substantial impact (increase) on productivity. Our simulations showed an
average increment of carbon sink of 0.023 Pg/year that was dominated by an increase
in GPP. This estimate reflects pure CO, fertilization effect on ecosystems in urban and
suburban ecosystems. This positive effect may be counterbalanced by negative effects
of cities’ pollution on ecosystem productivity, such as urban ozone and urban dust
effects on plants, and effects of air pollution on the surface energy budget.

4.4 Effects of elevated nitrogen deposition

The sensitivity of the GPP flux to the additional atmospheric nitrogen deposition
was the highest among all analysed urban changes (+0.164 Pg/year). The addi-
tional nitrogen to the soils enhanced the microbial activity and lead to the higher
heterotrophic respiration component of TER (+0.125Pg/year). The total net carbon
flux (NEE) increased over the whole modelled domain by 0.039 Pg/year. This re-
sult is based on the model assumption that temperate and boreal vegetation is ni-
trogen limited (Vitousek et al., 2002). An increasing deposition of nitrogen from
the atmosphere serves as a fertiliser for European ecosystems. Of all individual
urbanization-driven changes studied here, nitrogen deposition has the most signifi-
cant impacts on the total carbon balance. The role of atmospheric nitrogen deposition

2456

BGD
5, 2445-2470, 2008

The response of the
terrestrial biosphere
to urbanization

K. Trusilova and
G. Churkina

Title Page
Abstract Introduction
Conclusions References

Tables Figures

1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-print.pdf
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

on the European carbon balance as a fertiliser is however debatable because agricul-
tural land, which occupies a considerable proportion of Europe. In 1997 arable land
together with permanent cropland and pasture covered 44% of EU15 (EUROSTAT,
http://ec.europa.eu/agriculture/envir/report/en/terr_en/report.ntm). Agricultural land re-
ceives high loads of nitrogen directly as chemical fertilizer and therefore insensitive to
the increasing deposition of nitrogen from atmosphere. In this study, we only looked
at the effects of atmospheric nitrogen deposition assuming no additional nitrogen-
fertilisers are applied on agricultural land. On the other hand, the fraction of agricultural
land was declining, while fraction of forests was increasing in the last 50 years. The
European forests are currently young and are in the re-growth stage. The total forest
area of 30 European countries has increased by 6% between 1950 and 1990 (Nabu-
urs et al., 2003). The productivity of regrowing forests is especially sensitive to the
increasing atmospheric nitrogen deposition (Churkina et al., 2007).

4.5 Synergetic effects

When all four urbanization-induced changes were applied at once, the biosphere re-
sponded with a 0.056 Pg/year increase of carbon sink. This increase in NEE resulted
from an increase in GPP (+0.044 Pg/year) and a reduction in TER (—0.013 Pg/year). As
the vegetation was replaced by barren land the amount of the potential carbon source
through growth respiration was reduced, however, in the whole model domain, the re-
duction of carbon sink due to urban land use and climate was compensated by an
increase of carbon sink due to fertilisation by simultaneously increasing atmospheric
CO, and nitrogen deposition.

The synergetic effect of the urbanization-driven changes considered here led to a
stronger increase of carbon sink than any of them individually (Fig. 6), because at-
mospheric CO, and soil nitrogen availability co-limit productivity of land ecosystems.
This finding is confirmed by field studies where nitrogen availability was shown to be
a constraint to CO,-induced stimulation of plant growth (Oren et al., 2001; Reich et
al.,, 2006). Our results were also in accordance with results from several modelling
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studies (Churkina et al., 2007; Lloyd, 1999) where numerical models were employed to
simulate response of biosphere carbon cycle on the continental level. Low availability
of nitrogen in the soils suppresses the positive physiological response of plant growth
to elevated CO,. Anthropogenic increase in nitrogen deposition enhances availability
of nitrogen in soil and thus the response of plants to increasing atmospheric CO,. In-
crease in atmospheric nitrogen deposition has been shown to drive the sequestration
of carbon by European forests (Magnani et al., 2007).

Relationships between the carbon sequestration rates, nitrogen input, and climate
variables are nonlinear and due to this nonlinearity, the total effect on vegetation of all
urbanization-related changes together was not equal to the sum of individual effects
from individual changes.

5 Summary and outlook

In this study we analysed dynamics of carbon sink in Europe driven by urbanization-
induced changes of land use, climate, concentrations of carbon dioxide and nitrogen
deposition from the atmosphere. We used the BIOME-BGC terrestrial ecosystem
model to calculate responses of the biosphere to the urban changes applied indi-
vidually and all together. We did not include agricultural management such as field-
fertilisation with nitrogen compounds in our simulations.

The land use and urban climate changes affected rather small land areas while the
urban CO,-dome and nitrogen pollution spread over larger areas. When all urban
changes were applied at once, the synergetic effects were dominated by the fertilisation
effects from the CO,-dome and nitrogen pollution and led to a net increase of carbon
sink in Europe.
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of this work at the Second Workshop on Urbanization Interactions with Biogeochemistry and
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References

Chen, Y., Churkina, G., and Heimann, M.: A comparison of regional climate variables between
various data sources, 8, Max-Planck-Institut fir Biogeochemie, Jena, 2007.

Churkina, G., Trusilova, K., Vetter, M., and Dentener, F.: Contributions of nitrogen deposition
and forest regrowth to terrestrial carbon uptake, Carbon Balance and Management, 2(5),
doi:10.1186/1750-0680-2-5, 2007.

Dewees, P. A. and Saxena, N. C.: Wood product markets as incentives for farmer tree grow-
ing, in: Farms, Trees and Farmers, Tree Management in Farmer Strategies: Responses to
Agricultural Intensification, edited by: Arnold, J. E. M. and Dewees P. A., Oxford University
Press, 198-241., 1995.

ESA: NO, pollution characteristic for Europe’s sprawled urban areas: Nitrogen dioxide pollution,
European Space Agency, 2004.

Feser, F., Weisse, R., and von Storch, H.: Multi-decadal atmospheric modeling for Europe
yields multi-purpose data, EOS Transactions, 305-310, 2001.

Galloway, J. N., Dentener, F. J., Capone, D. G., et al.: Nitrogen cycles: past, present, and
future, Biogeochemistry, 70(2), 153—226, 2004.

Gratani, L. and Varone, L. Daily and seasonal variation of CO2 in the city of Rome in relationship
with the traffic volume, Atmos. Environ., 39, 2619-2624, 2005.

Griffin, K. L., Anderson, O. R., Gastrich, M. D., et al.: Plant growth in elevated CO, alters
mitochondrial number and chloroplast fine structure, Proceedings of the National Academy
of Sciences of the United States of America, 98(5), 2473-2478, 2001.

Holland, E. A., Dentener, F. J., Braswell, B. H., and Sulzman, J. M. Contemporary and pre-
industrial global reactive nitrogen budgets, Biogeochemistry, 46(1-3), 7—43, 1999.

Hollinger, D. Y., Goltz, S. M., Davidson, E. A., et al.: Seasonal patterns and environmental
control of carbon dioxide and water vapour exchange in an ecotonal boreal forest, Glob.
Change Biol., 5, 891-902, 1999.

Idso, C. D., Idso, S. B., and Balling, R. C.: An intensive two-week study of an urban CO2 dome
in Phoenix, Arizona, USA, Atmospheric Environment, 35(6), 995—1000, 2001.

2459

BGD
5, 2445-2470, 2008

The response of the
terrestrial biosphere
to urbanization

K. Trusilova and

G. Churkina
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-print.pdf
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

30

Idso, S. B. and Kimball, B. A.: CO, enrichment of sour orange trees: 13 years and counting,
Environmental and Experimental Botany, 46(2), 147—-153, 2001.

Jacob, D. and Podzun, R. Sensitivity studies with the regional climate model REMO, Meteorol-
ogy and Atmospheric Physics, 63(1-2), 119-129, 1997.

Jones, P. D., Groisman, P. Y., Coughlan, M., et al.. Assessment of Urbanization Effects in
Time-Series of Surface Air-Temperature over Land, Nature, 347(6289), 169—172, 1990.

Koerner, B. and Klopatek, J.: Anthropogenic and natural CO, emission sources in an arid urban
environment, Environmental Pollution, 116, S45-S51., 2002.

Kukla, G., Gavin, J., and Karl, T. R.: Urban Warming, Journal of Climate and Applied Meteorol-
ogy, 25(9), 1265—-1270, 1986.

Lamptey, B. L., Barron, E. J., and Pollard, D.: Impacts of agriculture and urbanization on the
climate of the Northeastern United States, Global and Planetary Change, 49(3—4), 203—221,
2005.

Lavalle, C., Demicheli, L., Kasanko, M., et al., Towards an urban atlas, European Environment
Agency, Copenhagen, 2002.

Lloyd, J.: The CO, dependence of photosynthesis, plant growth responses to elevated CO2
concentrations and their interaction with soil nutrient status, Il. Temperate and boreal for-
est productivity and the combined effects of increasing CO2 concentrations and increased
nitrogen deposition at a global scale, Functional Ecology, 13(4), 439-459, 1999.

Magnani, F., Mencuccini, M., Borghetti, M., et al.: The human footprint in the carbon cycle of
temperate and boreal forests, Nature, 447(7146), 848-850, 2007.

Milesi, C., Elvidge, C. D., Nemani, R. R., and Running, S. W.: Assessing the impact of urban
land development on net primary productivity in the southeastern United States, Remote
Sensing of Environment, 86(3), 401—410, 2003.

Nabuurs, G. J., Schelhaas, M. J., Mohren, G. M. J., and Field, C. B.: Temporal evolution of
the European forest sector carbon sink from 1950 to 1999, Global Change Biology, 9(2),
152-160, 2003.

Nowak, D. J.: Estimating leaf area and leaf biomass of open-grown deciduous urban trees,
Forest Science, 42(4), 504-507, 1996.

Oren, R., Ellsworth, D. S., Johnsen, K. H., et al.: Soil fertility limits carbon sequestration by
forest ecosystems in a CO,-enriched atmosphere, Nature, 411(6836), 469—472, 2001.

Parker, D. E.: Climate — Large-scale warming is not urban, Nature, 432(7015), 290-290, 2004.

Reich, P. B., Hobbie, S. E., Lee, T., et al.: Nitrogen limitation constrains sustainability of ecosys-

2460

BGD
5, 2445-2470, 2008

The response of the
terrestrial biosphere
to urbanization

K. Trusilova and

G. Churkina
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-print.pdf
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

30

tem response to CO,, Nature, 440(7086), 922—-925, 2006.

Running, S. W.: Testing Forest-Bgc Ecosystem Process Simulations across a Climatic Gradient
in Oregon. Ecological Applications, 4(2), 238—247, 1994.

Running, S. W. and Coughlan, J. C.: A General-Model of Forest Ecosystem Processes for Re-
gional Applications, 1. Hydrologic Balance, Canopy Gas-Exchange and Primary Production
Processes. Ecological Modelling, 42(2), 125—-154, 1988.

Running, S. W. and Gower, S. T.: Forest-Bgc, a General-Model of Forest Ecosystem Processes
for Regional Applications, 2. Dynamic Carbon Allocation and Nitrogen Budgets, Tree Physi-
ology, 9(1-2), 147—-160, 1991.

Running, S. W. and Hunt, E. R.: Generalization of a forest ecosystem process model for other
biomes, BIOME-BGC and an application for global-scale models, Scaling Physiological Pro-
cesses: Leaf to Globe, J. Ehleringer, and C. Field, pp. 1410158, Academic Press, San Diego,
72(2 SUPPL), 236, 1991.

Soegaard, H. and Moller-Jensen, L.: Towards a spatial CO, budget of a metropolitan region
based on textural image classification and flux measurements, Remote Sensing of Environ-
ment, 87, 283—294, 2003.

Taub, D. R., Seemann, J. R. and Coleman, J. S.: Growth in elevated CO2 protects photo-
synthesis against high-temperature damage, Plant Cell and Environment, 23(6), 649—656,
2000.

Thornton, P. E.: Regional Ecosystem Simulation: Combining Surface- and Satellite-Based Ob-
servations to Study Linkages between Terrestrial Energy and Mass Budgets, University of
Montana, Missoula, 1998.

Thornton, P. E., Law, B. E., Gholz, H. L., et al.: Modeling and measuring the effects of dis-
turbance history and climate on carbon and water budgets in evergreen needleleaf forests,
Agricultural and Forest Meteorology, 113(1-4), 185-222, 2002.

Trusilova, K.,Jung, M., Churkina, G., et al.: Urbanization Impacts on the Climate in Europe:
Numerical Experiments by the PSU/NCAR Mesoscale Model (MM5), Journal of Applied Me-
teorology and Climatology, 47(5), 1442-1455, 2008.

USGS: Analyzing Land Use Change In Urban Environments, U.S. Department of the Interior,
US Geological Survey, 1999.

Vitousek, P. M., Hattenschwiler, S., Olander, L., and Allison, S. Nitrogen and nature, Ambio,
31(2), 97-101, 2002.

Widory, D. and Javoy, M.: The carbon isotope composition of atmospheric CO2 in Paris. Earth

2461

BGD
5, 2445-2470, 2008

The response of the
terrestrial biosphere
to urbanization

K. Trusilova and

G. Churkina
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-print.pdf
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

5

and Planetary Science Letters, 215, 289-298, 2003.

Wood, F. B.: On the Need for Validation of the Jones Et-Al Temperature Trends with Respect to
Urban Warming — Comment. Climatic Change, 12(3), 297-312, 1988.

WRI: World Resources 1998-1999: Environmental change and human health. Oxford Univer-
sity Press for the World Resources Institute, 1998.

Zimnoch, M., Florkowski, T., Necki, J. M., and Neubert, R. E. M.: Diurnal variability of 413C
and 4180 of atmospheric CO, in the urban atmosphere of Krakow, Poland, Isotopes in
Environmental and Health Studies, 40, 129-143, 2004.

2462

BGD
5, 2445-2470, 2008

The response of the
terrestrial biosphere
to urbanization

K. Trusilova and
G. Churkina

it

(8
S

2


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-print.pdf
http://www.biogeosciences-discuss.net/5/2445/2008/bgd-5-2445-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 1. Model setup for simulating different urbanization-driven changes of the terrestrial
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biosphere.
. ) - Disturbances
Simulation Description
Urban land Urban climate Urban CO,- Atm. nitrogen
bias dome deposition
NOU Baseline simulation No No No No
ULAND Effects of urban land Yes No No No
(fraction) (urban  land
fr.)
UMET Effects of urban warm No Yes No No
and dry environment
uco2 Effects of urban elevated No No Yes No
CO, concentrations (urban CO,)
UAND Effects of elevated atm. No No No Yes
nitrogen deposition
UALL Synergetic effect of all Yes Yes Yes Yes
four factors
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Table 2. Ratio of the urban CO, concentration increase relative to the rural CO, concentration

as observed in several European cities.
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Site CO, dome intensity

Source of information

Rome, ltaly 15%—23%
Krakow, Poland 24%

Paris, France Up to 220%
Copenhagen, Denmark Up to 86%

(Gratani and Varone, 2005)

(
(
(

Zimnoch et al., 2004)
Widory and Javoy, 2003)

Soegaard and Moller-Jensen, 2003)
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Fig. 1. Background atmospheric CO, concentration [ppm] rise used in simulations with the

BIOME-BGC model. For each year, one concentration value is uniformly used for all model grid
cells assuming that the atmosphere is well-mixed. Data source: CARBOEUROPE-IP database.
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Fig. 2. Fraction of urban land [%] in grid cells of the model domain.
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Fig. 3. The spatial distribution of differences [%] in carbon dioxide concentrations (ACO,)
between urban and rural land relative to the background CO, concentration.
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Fig. 4. Dry nitrogen atmospheric deposition [g m~2 year'1] in 1958 (a) and 2003 (b).
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Fig. 5. Response of GPP (al,b1,c1,d1,e1) and TER (a2,b2,c2,d2,e2) fluxes to different
urbanization-driven changes: urban land (a1,a2), urban climate (b1,b2), urban CO, dome
(c1,c2), elevated nitrogen deposition (d1,d2), and all mentioned changes together (e1,e2).
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Fig. 6. Changes of carbon amount [Pg/year] exchanged between the biosphere and the atmo-
sphere in response to different urban disturbances: urban land (ULAND), urban meteorological
bias (UMET), urban CO,-dome (UCO,), anthropogenic nitrogen deposition (UJAND), and com-
position of all four disturbances (UALL). Data are 46-year averages of BIOME-BGC model
output over 1958—-2003.
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